Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Neurobiol Dis ; 194: 106487, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552722

RESUMEN

Pyk2 has been shown previously to be involved in several psychological and cognitive alterations related to stress, Huntington's disease, and Alzheimer's disease. All these disorders are accompanied by different types of impairments in sociability, which has recently been linked to improper mitochondrial function. We hypothesize that Pyk2, which regulates mitochondria, could be associated with the regulation of mitochondrial dynamics and social skills. In the present manuscript, we report that a reduction of Pyk2 levels in mouse pyramidal neurons of the hippocampus decreased social dominance and aggressivity. Furthermore, social interactions induced robust Pyk2-dependent hippocampal changes in several oxidative phosphorylation complexes. We also observed that Pyk2 levels were increased in the CA1 pyramidal neurons of schizophrenic subjects, occurring alongside changes in different direct and indirect regulators of mitochondrial function including DISC1 and Grp75. Accordingly, overexpressing Pyk2 in hippocampal CA1 pyramidal cells mimicked some specific schizophrenia-like social behaviors in mice. In summary, our results indicate that Pyk2 might play a role in regulating specific social skills likely via mitochondrial dynamics and that there might be a link between Pyk2 levels in hippocampal neurons and social disturbances in schizophrenia.


Asunto(s)
Quinasa 2 de Adhesión Focal , Esquizofrenia , Humanos , Ratones , Animales , Quinasa 2 de Adhesión Focal/metabolismo , Habilidades Sociales , Hipocampo/metabolismo , Células Piramidales/metabolismo
2.
J Affect Disord ; 354: 574-588, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38490587

RESUMEN

BACKGROUND: Chronic stress is an important risk factor for the development of major depressive disorder (MDD). Recent studies have shown microbiome dysbiosis as one of the pathogenic mechanisms associated with MDD. Thus, it is important to find novel non-pharmacological therapeutic strategies that can modulate gut microbiota and brain activity. One such strategy is photobiomodulation (PBM), which involves the non-invasive use of light. OBJECTIVE/HYPOTHESIS: Brain-gut PBM could have a synergistic beneficial effect on the alterations induced by chronic stress. METHODS: We employed the chronic unpredictable mild stress (CUMS) protocol to induce a depressive-like state in mice. Subsequently, we administered brain-gut PBM for 6 min per day over a period of 3 weeks. Following PBM treatment, we examined behavioral, structural, molecular, and cellular alterations induced by CUMS. RESULTS: We observed that the CUMS protocol induces profound behavioral alterations and an increase of sirtuin1 (Sirt1) levels in the hippocampus. We then combined the stress protocol with PBM and found that tissue-combined PBM was able to rescue cognitive alterations induced by CUMS. This rescue was accompanied by a restoration of hippocampal Sirt1 levels, prevention of spine density loss in the CA1 of the hippocampus, and the modulation of the gut microbiome. PBM was also effective in reducing neuroinflammation and modulating the morphology of Iba1-positive microglia. LIMITATIONS: The molecular mechanisms behind the beneficial effects of tissue-combined PBM are not fully understood. CONCLUSIONS: Our results suggest that non-invasive photobiomodulation of both the brain and the gut microbiome could be beneficial in the context of stress-induced MDD.


Asunto(s)
Trastorno Depresivo Mayor , Terapia por Luz de Baja Intensidad , Ratones , Animales , Depresión/psicología , Sirtuina 1/metabolismo , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Hipocampo/metabolismo , Cognición , Estrés Psicológico/terapia , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de Enfermedad
3.
Cell Mol Life Sci ; 80(12): 367, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37987826

RESUMEN

BACKGROUND: Huntington's Disease (HD) is a disorder that affects body movements. Altered glutamatergic innervation of the striatum is a major hallmark of the disease. Approximately 30% of those glutamatergic inputs come from thalamic nuclei. Foxp2 is a transcription factor involved in cell differentiation and reported low in patients with HD. However, the role of the Foxp2 in the thalamus in HD remains unexplored. METHODS: We used two different mouse models of HD, the R6/1 and the HdhQ111 mice, to demonstrate a consistent thalamic Foxp2 reduction in the context of HD. We used in vivo electrophysiological recordings, microdialysis in behaving mice and rabies virus-based monosynaptic tracing to study thalamo-striatal and thalamo-cortical synaptic connectivity in R6/1 mice. Micro-structural synaptic plasticity was also evaluated in the striatum and cortex of R6/1 mice. We over-expressed Foxp2 in the thalamus of R6/1 mice or reduced Foxp2 in the thalamus of wild type mice to evaluate its role in sensory and motor skills deficiencies, as well as thalamo-striatal and thalamo-cortical connectivity in such mouse models. RESULTS: Here, we demonstrate in a HD mouse model a clear and early thalamo-striatal aberrant connectivity associated with a reduction of thalamic Foxp2 levels. Recovering thalamic Foxp2 levels in the mouse rescued motor coordination and sensory skills concomitant with an amelioration of neuropathological features and with a repair of the structural and functional connectivity through a restoration of neurotransmitter release. In addition, reduction of thalamic Foxp2 levels in wild type mice induced HD-like phenotypes. CONCLUSIONS: In conclusion, we show that a novel identified thalamic Foxp2 dysregulation alters basal ganglia circuits implicated in the pathophysiology of HD.


Asunto(s)
Enfermedad de Huntington , Trastornos Motores , Humanos , Animales , Ratones , Tálamo , Cuerpo Estriado , Movimiento , Modelos Animales de Enfermedad , Proteínas Represoras , Factores de Transcripción Forkhead/genética
5.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835243

RESUMEN

Chronic stress is a core risk factor for developing a myriad of neurological disorders, including major depression. The chronicity of such stress can lead to adaptive responses or, on the contrary, to psychological maladaptation. The hippocampus is one of the most affected brain regions displaying functional changes in chronic stress. Egr1, a transcription factor involved in synaptic plasticity, is a key molecule regulating hippocampal function, but its role in stress-induced sequels has been poorly addressed. Emotional and cognitive symptoms were induced in mice by using the chronic unpredictable mild stress (CUMS) protocol. We used inducible double-mutant Egr1-CreERT2 x R26RCE mice to map the formation of Egr1-dependent activated cells. Results show that short- (2 days) or long-term (28 days) stress protocols in mice induce activation or deactivation, respectively, of hippocampal CA1 neural ensembles in an Egr1-activity-dependent fashion, together with an associated dendritic spine pathology. In-depth characterization of these neural ensembles revealed a deep-to-superficial switch in terms of Egr1-dependent activation of CA1 pyramidal neurons. To specifically manipulate deep and superficial pyramidal neurons of the hippocampus, we then used Chrna7-Cre (to express Cre in deep neurons) and Calb1-Cre mice (to express Cre in superficial neurons). We found that specific manipulation of superficial but not deep pyramidal neurons of the CA1 resulted in the amelioration of depressive-like behaviors and the restoration of cognitive impairments induced by chronic stress. In summary, Egr1 might be a core molecule driving the activation/deactivation of hippocampal neuronal subpopulations underlying stress-induced alterations involving emotional and cognitive sequels.


Asunto(s)
Región CA1 Hipocampal , Cognición , Proteína 1 de la Respuesta de Crecimiento Precoz , Emociones , Células Piramidales , Estrés Psicológico , Animales , Ratones , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Plasticidad Neuronal/fisiología , Neuronas , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología , Enfermedad Crónica , Región CA1 Hipocampal/fisiopatología
6.
Brain Behav Immun ; 109: 144-161, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702234

RESUMEN

In the last two decades, microglia have emerged as key contributors to disease progression in many neurological disorders, not only by exerting their classical immunological functions but also as extremely dynamic cells with the ability to modulate synaptic and neural activity. This dynamic behavior, together with their heterogeneous roles and response to diverse perturbations in the brain parenchyma has raised the idea that microglia activation is more diverse than anticipated and that understanding the molecular mechanisms underlying microglial states is essential to unravel their role in health and disease from development to aging. The Ikzf1 (a.k.a. Ikaros) gene plays crucial roles in modulating the function and maturation of circulating monocytes and lymphocytes, but whether it regulates microglial functions and states is unknown. Using genetic tools, here we describe that Ikzf1 is specifically expressed in the adult microglia in brain regions such as cortex and hippocampus. By characterizing the Ikzf1 deficient mice, we observed that these mice displayed spatial learning deficits, impaired hippocampal CA3-CA1 long-term potentiation, and decreased spine density in pyramidal neurons of the CA1, which correlates with an increased expression of synaptic markers within microglia. Additionally, these Ikzf1 deficient microglia exhibited a severe abnormal morphology in the hippocampus, which is accompanied by astrogliosis, an aberrant composition of the inflammasome, and an altered expression of disease-associated microglia molecules. Interestingly, the lack of Ikzf1 induced changes on histone 3 acetylation and methylation levels in the hippocampus. Since the lack of Ikzf1 in mice appears to induce the internalization of synaptic markers within microglia, and severe gliosis we then analyzed hippocampal Ikzf1 levels in several models of neurological disorders. Ikzf1 levels were increased in the hippocampus of these neurological models, as well as in postmortem hippocampal samples from Alzheimer's disease patients. Finally, over-expressing Ikzf1 in cultured microglia made these cells hyporeactive upon treatment with lipopolysaccharide, and less phagocytic compared to control microglia. Altogether, these results suggest that altered Ikzf1 levels in the adult hippocampus are sufficient to induce synaptic plasticity and memory deficits via altering microglial state and function.


Asunto(s)
Hipocampo , Microglía , Ratones , Animales , Microglía/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Potenciación a Largo Plazo/fisiología , Inflamación/metabolismo
7.
Mar Drugs ; 20(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36286471

RESUMEN

Major depression disorder (MDD) is a severe mental alteration with a multifactorial origin, and chronic stress is one of the most relevant environmental risk factors associated with MDD. Although there exist some therapeutical options, 30% of patients are still resistant to any type of treatment. GSK3ß inhibitors are considered very promising therapeutic tools to counteract stress-related affectations. However, they are often associated with excessive off-target effects and undesired secondary alterations. Meridianins are alkaloids with an indole framework linked to an aminopyrimidine ring from Antarctic marine ascidians. Meridianins could overcome several of the aforementioned limitations since we previously demonstrated that they can inhibit GSK3ß activity without the associated neurotoxic or off-target effects in rodents. Here, we show that meridianins delivered into the lateral ventricle inhibited GSK3ß in several brain regions involved with stress-related symptoms. We also observed changes in major signaling pathways in the prefrontal cortex (Akt and PKA) and hippocampus (PKC and GluR1). Moreover, meridianins increased synaptic activity, specifically in the CA1 but not in the CA3 or other hippocampal subfields. Finally, we chronically treated the mice subjected to an unpredictable mild chronic stress (CUMS) paradigm with meridianins. Our results showed improvements produced by meridianins in behavioral alterations provoked by CUMS. In conclusion, meridianins could be of therapeutic interest to patients with stress-related disorders such as MDD.


Asunto(s)
Hipocampo , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Depresión , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Indoles/farmacología , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estrés Fisiológico
8.
Cell Mol Life Sci ; 79(8): 416, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35819730

RESUMEN

N6-methyladenosine (m6A) regulates many aspects of RNA metabolism and is involved in learning and memory processes. Yet, the impact of a dysregulation of post-transcriptional m6A editing on synaptic impairments in neurodegenerative disorders remains unknown. Here we investigated the m6A methylation pattern in the hippocampus of Huntington's disease (HD) mice and the potential role of the m6A RNA modification in HD cognitive symptomatology. m6A modifications were evaluated in HD mice subjected to a hippocampal cognitive training task through m6A immunoprecipitation sequencing (MeRIP-seq) and the relative levels of m6A-modifying proteins (FTO and METTL14) by subcellular fractionation and Western blot analysis. Stereotaxic CA1 hippocampal delivery of AAV-shFTO was performed to investigate the effect of RNA m6A dysregulation in HD memory deficits. Our results reveal a m6A hypermethylation in relevant HD and synaptic related genes in the hippocampal transcriptome of Hdh+/Q111 mice. Conversely, m6A is aberrantly regulated in an experience-dependent manner in the HD hippocampus leading to demethylation of important components of synapse organization. Notably, the levels of RNA demethylase (FTO) and methyltransferase (METTL14) were modulated after training in the hippocampus of WT mice but not in Hdh+/Q111 mice. Finally, inhibition of FTO expression in the hippocampal CA1 region restored memory disturbances in symptomatic Hdh+/Q111 mice. Altogether, our results suggest that a differential RNA methylation landscape contributes to HD cognitive symptoms and uncover a role of m6A as a novel hallmark of HD.


Asunto(s)
Enfermedad de Huntington , Animales , Metilación de ADN , Hipocampo/metabolismo , Enfermedad de Huntington/genética , Trastornos de la Memoria/genética , Ratones , ARN/metabolismo
9.
J Neurosci ; 42(27): 5346-5360, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35610044

RESUMEN

Motor skills learning is classically associated with brain regions including cerebral and cerebellar cortices and basal ganglia nuclei. Less is known about the role of the hippocampus in the acquisition and storage of motor skills. Here, we show that mice receiving a long-term training in the accelerating rotarod display marked hippocampal transcriptional changes and reduced pyramidal neurons activity in the CA1 region when compared with naive mice. Then, we use mice in which neural ensembles are permanently labeled in an Egr1 activity-dependent fashion. Using these mice, we identify a subpopulation of Egr1-expressing pyramidal neurons in CA1 activated in short-term (STT) and long-term (LTT) trained mice in the rotarod task. When Egr1 is downregulated in the CA1 or these neuronal ensembles are depleted, motor learning is improved whereas their chemogenetic stimulation impairs motor learning performance. Thus, Egr1 organizes specific CA1 neuronal ensembles during the accelerating rotarod task that limit motor learning. These evidences highlight the role of the hippocampus in the control of this type of learning and we provide a possible underlying mechanism.SIGNIFICANCE STATEMENT It is a major topic in neurosciences the deciphering of the specific circuits underlying memory systems during the encoding of new information. However, the potential role of the hippocampus in the control of motor learning and the underlying mechanisms has been poorly addressed. In the present work we show how the hippocampus responds to motor learning and how the Egr1 molecule is one of the major responsible for such phenomenon controlling the rate of motor coordination performances.


Asunto(s)
Región CA1 Hipocampal , Proteína 1 de la Respuesta de Crecimiento Precoz , Neuronas , Animales , Región CA1 Hipocampal/fisiología , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Aprendizaje , Ratones , Neuronas/fisiología , Células Piramidales/fisiología
10.
Front Pharmacol ; 13: 791666, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281935

RESUMEN

Glycogen synthase kinase 3ß (GSK3ß) is a core protein, with a relevant role in many neurodegenerative disorders including Alzheimer's disease. The enzyme has been largely studied as a potential therapeutic target for several neurological diseases. Unfortunately, preclinical and clinical studies with several GSK3ß inhibitors have failed due to many reasons such as excessive toxicity or lack of effects in human subjects. We previously reported that meridianins are potent GSK3ß inhibitors without altering neuronal viability. In the present work, we examine whether meridianins are capable to inhibit neural GSK3ß in vivo and if such inhibition induces improvements in the 5xFAD mouse model of Alzheimer's Disease. Direct administration of meridianins in the third ventricle of 5xFAD mice induced robust improvements of recognition memory and cognitive flexibility as well as a rescue of the synaptic loss and an amelioration of neuroinflammatory processes. In summary, our study points out meridianins as a potential compound to treat neurodegenerative disorders associated with an hyperactivation of GSK3ß such as Alzheimer's disease.

12.
Cell Death Dis ; 12(6): 616, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131105

RESUMEN

RTP801/REDD1 is a stress-regulated protein whose upregulation is necessary and sufficient to trigger neuronal death. Its downregulation in Parkinson's and Huntington's disease models ameliorates the pathological phenotypes. In the context of Alzheimer's disease (AD), the coding gene for RTP801, DDIT4, is responsive to Aß and modulates its cytotoxicity in vitro. Also, RTP801 mRNA levels are increased in AD patients' lymphocytes. However, the involvement of RTP801 in the pathophysiology of AD has not been yet tested. Here, we demonstrate that RTP801 levels are increased in postmortem hippocampal samples from AD patients. Interestingly, RTP801 protein levels correlated with both Braak and Thal stages of the disease and with GFAP expression. RTP801 levels are also upregulated in hippocampal synaptosomal fractions obtained from murine 5xFAD and rTg4510 mice models of the disease. A local RTP801 knockdown in the 5xFAD hippocampal neurons with shRNA-containing AAV particles ameliorates cognitive deficits in 7-month-old animals. Upon RTP801 silencing in the 5xFAD mice, no major changes were detected in hippocampal synaptic markers or spine density. Importantly, we found an unanticipated recovery of several gliosis hallmarks and inflammasome key proteins upon neuronal RTP801 downregulation in the 5xFAD mice. Altogether our results suggest that RTP801 could be a potential future target for theranostic studies since it could be a biomarker of neuroinflammation and neurotoxicity severity of the disease and, at the same time, a promising therapeutic target in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Encefalitis/genética , Trastornos de la Memoria/genética , Factores de Transcripción/fisiología , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Encefalitis/etiología , Encefalitis/patología , Femenino , Humanos , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Ratones , Ratones Transgénicos , Neuroinmunomodulación/genética , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/patología , Índice de Severidad de la Enfermedad
13.
Biomolecules ; 12(1)2021 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-35053183

RESUMEN

RTP801/REDD1 is a stress-regulated protein whose levels are increased in several neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's diseases (HD). RTP801 downregulation ameliorates behavioral abnormalities in several mouse models of these disorders. In HD, RTP801 mediates mutant huntingtin (mhtt) toxicity in in vitro models and its levels are increased in human iPSCs, human postmortem putamen samples, and in striatal synaptosomes from mouse models of the disease. Here, we investigated the role of RTP801 in the hippocampal pathophysiology of HD. We found that RTP801 levels are increased in the hippocampus of HD patients in correlation with gliosis markers. Although RTP801 expression is not altered in the hippocampus of the R6/1 mouse model of HD, neuronal RTP801 silencing in the dorsal hippocampus with shRNA containing AAV particles ameliorates cognitive alterations. This recovery is associated with a partial rescue of synaptic markers and with a reduction in inflammatory events, especially microgliosis. Altogether, our results indicate that RTP801 could be a marker of hippocampal neuroinflammation in HD patients and a promising therapeutic target of the disease.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Huntington , Animales , Modelos Animales de Enfermedad , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Ratones Transgénicos , Enfermedades Neuroinflamatorias
14.
Stem Cell Reports ; 15(1): 256-273, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32589876

RESUMEN

The hippocampus is important for memory formation and is severely affected in the brain with Alzheimer disease (AD). Our understanding of early pathogenic processes occurring in hippocampi in AD is limited due to tissue unavailability. Here, we report a chemical approach to rapidly generate free-floating hippocampal spheroids (HSs), from human induced pluripotent stem cells. When used to model AD, both APP and atypical PS1 variant HSs displayed increased Aß42/Aß40 peptide ratios and decreased synaptic protein levels, which are common features of AD. However, the two variants differed in tau hyperphosphorylation, protein aggregation, and protein network alterations. NeuroD1-mediated gene therapy in HSs-derived progenitors resulted in modulation of expression of numerous genes, including those involved in synaptic transmission. Thus, HSs can be harnessed to unravel the mechanisms underlying early pathogenic changes in the hippocampi of AD patients, and provide a robust platform for the development of therapeutic strategies targeting early stage AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Hipocampo/patología , Células Madre Pluripotentes Inducidas/patología , Esferoides Celulares/patología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Estudios de Casos y Controles , Terapia Genética , Humanos , Neuronas/patología , Fenotipo , Presenilina-1/genética , Presenilina-1/metabolismo , Agregado de Proteínas , Proteoma/metabolismo , Proteómica , Transcripción Genética
15.
Cell Death Dis ; 11(6): 411, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483154

RESUMEN

Astrocytes have emerged as crucial regulators of neuronal network activity, synapse formation, and underlying behavioral and cognitive processes. Despite some pathways have been identified, the communication between astrocytes and neurons remains to be completely elucidated. Unraveling this communication is crucial to design potential treatments for neurological disorders like temporal lobe epilepsy (TLE). The BDNF and TrkB molecules have emerged as very promising therapeutic targets. However, their modulation can be accompanied by several off-target effects such as excitotoxicity in case of uncontrolled upregulation or dementia, amnesia, and other memory disorders in case of downregulation. Here, we show that BDNF and TrkB from astrocytes modulate neuronal dysfunction in TLE models. First, conditional overexpression of BDNF from astrocytes worsened the phenotype in the lithium-pilocarpine mouse model. Our evidences pointed out to the astrocytic pro-BDNF isoform as a major player of this altered phenotype. Conversely, specific genetic deletion of BDNF in astrocytes prevented the increase in the number of firing neurons and the global firing rate in an in vitro model of TLE. Regarding to the TrkB, we generated mice with a genetic deletion of TrkB specifically in hippocampal neurons or astrocytes. Interestingly, both lines displayed neuroprotection in the lithium-pilocarpine model but only the mice with genetic deletion of TrkB in astrocytes showed significantly preserved spatial learning skills. These data identify the astrocytic BDNF and TrkB molecules as promising therapeutic targets for the treatment of TLE.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/patología , Neuronas/patología , Receptor trkB/metabolismo , Índice de Severidad de la Enfermedad , Animales , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/fisiopatología , Eliminación de Gen , Hipocampo/patología , Ácido Kaínico/administración & dosificación , Litio , Locomoción , Ratones Endogámicos C57BL , Neuroprotección , Fenotipo , Pilocarpina , Aprendizaje Espacial
16.
Front Cell Neurosci ; 14: 93, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477064

RESUMEN

The role of the WDFY1 protein has been studied as a TLR3/4 scaffold/recruiting protein in the immune system and in different oncogenic conditions. However, its function in brain remains poorly understood. We have found that in mice devoid of Helios (He-/- mice), a transcription factor specifically expressed during the development of the immune cells and the central nervous system, there is a permanent and sustained increase of Wdfy1 gene expression in the striatum and hippocampus. Interestingly, we observed that WDFY1 protein levels were also increased in the hippocampus and dorsolateral prefrontal cortex of schizophrenic patients, but not in the hippocampus of Alzheimer's disease patients with an associated psychotic disorder. Accordingly, young He-/- mice displayed several schizophrenic-like behaviors related to dysfunctions in the striatum and hippocampus. These changes were associated with an increase in spine density in medium spiny neurons (MSNs) and with a decrease in the number and size of PSD-95-positive clusters in the stratum radiatum of the CA1. Moreover, these alterations in structural synaptic plasticity were associated with a strong reduction of neuronal NF-κB in the pyramidal layer of the CA1 in He-/- mice. Altogether, our data indicate that alterations involving the molecular axis Helios-WDFY1 in neurons during the development of core brain regions could be relevant for the pathophysiology of neuropsychiatric disorders such as schizophrenia.

17.
J Neurosci ; 39(13): 2441-2458, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30700530

RESUMEN

It has been well documented that neurotrophins, including brain-derived neurotrophic factor (BDNF), are severely affected in Alzheimer's disease (AD), but their administration faces a myriad of technical challenges. Here we took advantage of the early astrogliosis observed in an amyloid mouse model of AD (5xFAD) and used it as an internal sensor to administer BDNF conditionally and locally. We first demonstrate the relevance of BDNF release from astrocytes by evaluating the effects of coculturing WT neurons and BDNF-deficient astrocytes. Next, we crossed 5xFAD mice with pGFAP:BDNF mice (only males were used) to create 5xFAD mice that overexpress BDNF when and where astrogliosis is initiated (5xF:pGB mice). We evaluated the behavioral phenotype of these mice. We first found that BDNF from astrocytes is crucial for dendrite outgrowth and spine number in cultured WT neurons. Double-mutant 5xF:pGB mice displayed improvements in cognitive tasks compared with 5xFAD littermates. In these mice, there was a rescue of BDNF/TrkB downstream signaling activity associated with an improvement of dendritic spine density and morphology. Clusters of synaptic markers, PSD-95 and synaptophysin, were also recovered in 5xF:pGB compared with 5xFAD mice as well as the number of presynaptic vesicles at excitatory synapses. Additionally, experimentally evoked LTP in vivo was increased in 5xF:pGB mice. The beneficial effects of conditional BDNF production and local delivery at the location of active neuropathology highlight the potential to use endogenous biomarkers with early onset, such as astrogliosis, as regulators of neurotrophic therapy in AD.SIGNIFICANCE STATEMENT Recent evidence places astrocytes as pivotal players during synaptic plasticity and memory processes. In the present work, we first provide evidence that astrocytes are essential for neuronal morphology via BDNF release. We then crossed transgenic mice (5xFAD mice) with the transgenic pGFAP-BDNF mice, which express BDNF under the GFAP promoter. The resultant double-mutant mice 5xF:pGB mice displayed a full rescue of hippocampal BDNF loss and related signaling compared with 5xFAD mice and a significant and specific improvement in all the evaluated cognitive tasks. These improvements did not correlate with amelioration of ß amyloid load or hippocampal adult neurogenesis rate but were accompanied by a dramatic recovery of structural and functional synaptic plasticity.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Trastornos de la Memoria/metabolismo , Plasticidad Neuronal , Enfermedad de Alzheimer/complicaciones , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/prevención & control , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos
18.
Transl Psychiatry ; 9(1): 3, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30664624

RESUMEN

Major depressive disorder (MDD) is a common disorder with a variety of symptoms including mood alterations, anhedonia, sleep and appetite disorders, and cognitive disturbances. Stressful life events are among the strongest risk factors for developing MDD. At the cellular level, chronic stress results in the modification of dendritic spine morphology and density. Here, we study the role of Pyk2 in the development of depressive-like symptoms induced by a model of chronic unpredictable mild stress (CUMS). Pyk2 is a non-receptor calcium-dependent protein-tyrosine kinase highly expressed in the forebrain principal neurons and involved in spine structure and density regulation. We show that Pyk2 knockout mice are less affected to anxiety-like and anhedonia-like phenotypes induced by the CUMS paradigm. Using region-specific knockout, we demonstrate that this phenotype is fully recapitulated by selective Pyk2 inactivation in the amygdala. We also show that in the absence of Pyk2 the spine alterations, PSD-95 clustering, and NMDA receptors changes induced by the CUMS paradigm are prevented. Our results reveal a possible role for Pyk2 in the response to stress and in synaptic markers expression and spine density regulation in the amygdala. We suggest that Pyk2 contributes to stress-induced responses through micro-structural changes and that its deficit may contribute to the resilience to chronic stress.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Trastorno Depresivo Mayor/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Estrés Psicológico/metabolismo , Animales , Conducta Animal , Espinas Dendríticas/metabolismo , Trastorno Depresivo Mayor/etiología , Modelos Animales de Enfermedad , Quinasa 2 de Adhesión Focal/genética , Ratones , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...